

NAMIBIA UNIVERSITY

OF SCIENCE AND TECHNOLOGY

FACULTY OF HEALTH, NATURAL RESOURCES AND APPLIED SCIENCES SCHOOL OF NATURAL AND APPLIED SCIENCES DEPARTMENT OF MATHEMATICS, STATISTICS AND ACTUARIAL SCIENCE

QUALIFICATION: BACHELOR OF SCIENCE HONOURS IN APPLIED MATHEMATICS		
QUALIFICATION CODE: 08BSHM	LEVEL: 8	
COURSE CODE: ADC801S	COURSE NAME: ADVANCED CALCULUS	
SESSION: JUNE 2023	PAPER: THEORY	
DURATION: 3 HOURS	MARKS: 100	

FIRST OPPORTUNITY EXAMINATION QUESTION PAPER		
EXAMINER	Prof A.S Eegunjobi	
MODERATOR	Prof O.D Makinde	

	INSTRUCTIONS	
1.	Answer ALL the questions.	
2.	Write clearly and neatly.	y
3.	Number the answers clearly.	

PERMISSIBLE MATERIALS

1. Non-programmable calculator without a cover

THIS QUESTION PAPER CONSISTS OF 3 PAGES (Including this front page)

1. (a) If $x = r \cos \theta$ and $y = r \sin \theta$, find the (r, θ) equations for ϕ which obeys Laplace's equation in two-dimensional caresian co-ordinates

$$\frac{\partial^2 \phi}{\partial x^2} + \frac{\partial^2 \phi}{\partial y^2} = 0$$

(5)

(b) if $Q = \log(\tan x + \tan y + \tan z)$, show that

$$\sin 2x \frac{\partial u}{\partial x} + \sin 2y \frac{\partial u}{\partial y} + \sin 2z \frac{\partial u}{\partial z} = 2$$

(5)

(c) If $u = x^2 \tan \frac{y}{x}$, find

$$\frac{\partial^2 u}{\partial x \partial y}\Big|_{(-1,2)}$$

(5)

2. (a) Minimize $f(x_1, x_2) = x_1 - x_2 + 2x_1^2 + 2x_1x_2 + x_2^2$ by taking the starting from the point $\mathbf{X}_1 = \begin{cases} 0 \\ 0 \end{cases}$ using Davidon-Fletcher-Powell (DFP) method with

$$[B_1] = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}, \quad \epsilon = 0.01$$

(10)

- (b) Minimize $f(x_1, x_2) = x_1 x_2 + 2x_1^2 + 2x_1x_2 + x_2^2$ by taking the starting from the point $\mathbf{X}_1 = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$, by using Newton's Method (10)
- 3. (a) If

$$\phi = x^n + y^n + z^n$$

show that

$$\mathbf{r} \cdot \nabla \phi = n\phi$$

where n is constant

(8)

(b) Find the directional derivative of the function

$$\phi(x, y, z) = x^2y - 3yz + 2xz$$

in the direction

$$\mathbf{n} = 4i - 7j + 4k$$

at the point (3, -2, 1).

(8)

- 4. (a) Determine the minimum distance between the origin and the hyperbola defined by $x^2 + 8xy + 7y^2 = 226$ (6)
 - (b) Show that $\nabla \cdot (\nabla g^m) = m(m+1)g^{m-2}$, if $\bar{g} = xi + yj + zk$. (9)
 - (c) A material body's geometric representation is a planar area R, delimited by the curves $y = x^2$ and $y = \sqrt{2 x^2}$ within the boundaries $0 \le x \le 1$. The density function associated with this model is denoted as $\rho = xy$.

i. Find the mass of the body.ii. Find the coordinates of the center of mass.	(4) (5)
5. A curve is defined parametrically by	
$x(t) = ae^{t} \cos t$, $y(t) = ae^{t} \sin t$, and $z(t) = \sqrt{2}a(e^{t} - 1)$.	
Find the following for the curve:	
(a) The tangent vector $\hat{\mathbf{T}}$	(5)
(b) The curvature κ	(5)
(c) The principal normal vector $\hat{\mathbf{N}}$	(5)
(d) The binormal vector $\hat{\mathbf{B}}$	(5)
(e) The torsion τ	(5)

June 2023

ADVANCED CALCULUS

ADC 801S

End of Exam!